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Abstract: We present an adaptive algorithm which can be used for integration

over a triangulated two-dimensional region D. The integrand function may
depict some types of singularity on subdivision lines. The algorithm produces

a sequence of approximations to the integral over D such that an extrapolation

to its limit can be applied. The algorithm is a generalization of the TRIEX
algorithm by de Doncker and Robinson.
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Mathematics of Computing: Mathematical Software - algorithm analysis, certi-

fication and testing; G.m Mathematics of Computing: Miscellaneous - Fortran
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1. Introduction

The TRIEX program [1,2] was developed for the automatic adaptive quadra-

ture of a user-supplied function over a triangle. The method used in TRIEX
is suited to functions with some types of singularity on the edges of the given

triangle or on subdivision lines of the adaptive partitioning strategy. In case of

a local difficult behaviour of the integrand within the triangle, one can proceed

by splitting the original triangle up so that the problem occurs on boundaries

of the subtriangles and call TRIEX on each of the subtriangles successively.

However, setting the accuracy requirements on the separate triangles is hard

if a relative error has to be satisfied on the entire region. Imposing a too

restrictive tolerance on triangles which have a small contribution to the overall

'On leave from Western Michigan University, Department of Computer Science, Kalama-
zoo, MI 49008-5021
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integral, leads to unnecessary work. Furthermore, if the integral over the entire

region is small while the contributions over some triangles are large in absolute

value, it may be troublesome to perform the separate integrations to sufficient

accuracy.

We have extended and modified the TRIEX method so that it will deal

with a triangularized region, by invoking the subdivision process on the set of

triangles. The resulting Fortran subroutine is named TRISET in single and

DTRIST in double precision. The strategy is similar to that of the quadrature

routine (D)QAGP in Quadpack [17], which integrates over an interval that is

split up at interior points where some integrand difficulties may occur. As such,

the TRISET algorithm also copes with various local singularities on edges of

the given triangles.

In the present method, the extrapolation (by the e-algorithm '19]) is carried

out on a sequence of results each of which is an approximation to the integral

over the entire set of triangles and corresponds to a specific level of subdivision

of this set. Each element in the sequence is obtained in a global adaptive way.

The algorithm and its theoretical background are outlined in the next section,

the structure and use of the program in section 3; some examples will be given

in section 4.

2. Algorithm
Let

N

D= U A*’

k-1

where the A* are given non-overlapping triangles (by this we mean that the

intersections of their interiors are pairwise disjoint). Then an approximation

QdU),

QdU) ~ JdU) = / f{x,y)dxdy
JD

is required, satisfying

\Io(f) - QdU) I

< rnax(t0 ,
tT |/d(/)|)

where t a and tT are user-prescribed absolute and relative tolerances respectively.

Given a symmetric basic rule Q for the triangle, we denote

q {

d
]

u) = Y.
k =

i

where

for k = 1, . .
. ,
N

represents the m2 -copy of Q on A*, obtained by a scaled application of the basic

rule to the subtriangles in the m2-subdivision of An [11,12,13,16]. Thus each
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summand is a sum of integration results over a partition of A^ with subtriangles

of size m~ 2 times the area of A*.

If each of the quadrature rule sums has an error functional expansion

which allows an extrapolation by the e-algorithm on the sequence

i = 0
,
1 ,...,

then the e-algorithm can also be applied to the sum expansion related to

{Q
iP{f)h i = 0, 1

Note that terms of the same nature (dependence on vn) in the error expansions

arising from different A*, will be eliminated from the sum expansion at the same

time. If, however, the global expansion is complicated, many extrapolations may
be needed to obtain the requested accuracy.

A typical error expansion which allows the use of the e-algorithm for extrap-

olation [4] is one with terms in

(log^ Tn)/ma ’
,

i/j > 0 integer, and ay > 0 real,

if one extrapolates on a sequence with a geometric progression in m, such as

m = rrii — 2
l

for i — 0,1,

The asymptotic expansions established for integration over the simplex by

Lyness [11,12,13] and by Lyness and Monegato [16] are of this type. These

include two-dimensional cases where /( x, y) is well-behaved over the triangle

apart from possible singularities at the vertices, for example

f{x,y) - TpQ(9)h(r)g(x,y)

over the unit triangle, with

r = (z
2 + y

2
)

1/2
,

9- tan
_1

(z/y),

and analytic functions ©, h and g.

Integrands with vertex and edge singularities of the types studied in [14]

are also allowed. The latter papers deal with singularities of the form xx yp rp

for integration over the unit square (and the corresponding expansions for the

triangle can be derived from it). Edge singularities of the form xx and x x logz

are handled in [18].

The essence of the TRISET algorithm is to replace with a quantity

that is computed as a sum over fewer triangles, not all of the same area. Thus

TRISET will approximate each Q^ \f), i = 0, 1, . .
.,
by a quantity

*(/) = X>L
!

?(/) == <?£'’(/)

k= 1
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where each summand is a sum of integration results over a partition of A k with

subtriangles of sizes > 2
-2 * area(Afe) as opposed to exactly 2

-2 *
• area(Afc) in

the full 2
2,-subdivision of A*.

Let us refer to the calculation of A{(f) as “stage i” of the algorithm. Stage 0

simply involves the application of Q to the given triangles. At the start of each

further stage (

i

> 0), all triangles in the partition of D are “active”, meaning

that a subtriangle belonging to the partition of Afc is of size > 2
-2t

• area(A*)

and hence can be selected for subdivision in the course of this stage.

A stage (except for stage 0) is built up as a succession of subdivision steps.

A subdivision step comprises the selection of the triangle with the largest error

estimate from the active set, subdividing it into 4 similar triangles, computing

estimates for the integrals and errors over the new subtriangles, checking the

termination criteria and (if not terminated) updating the list of triangles. At

the end of the i-th stage, Q (

D (f) has been successfully approximated, i.e. the

sum of the error estimates over the active set has become small enough, and

A{(f )
is used as a new extrapolation entry.

The algorithm can be represented as given in Figure 1. Details involving the

termination conditions, computation of the local integral and error estimates

and the extrapolation are as in the TRIEX algorithm.

Algorithm TRISET() {

Initialize

.

While global estimated error > global tolerance {

While estimated error over the active set

> active set tolerance {

Select the next active triangle for subdivision;

Subdivide, and integrate over the new subtriangles

;

Update the global result and error estimate;

Terminate in case of abnormal conditions;

Update the triangle list;

}

Extrapolate and estimate extrapolation error;

}

Terminate with either the extrapolation result or the global

integral sum depending on their relative error estimates.

}

Figure 1: Algorithm description
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3. Use and structure of the program
The integrator is written in Fortran, and is called as

CALL TRISET(F , N , X ,Y .EPSABS .EPSREL .MEVALS , ICLOSE , MAXTRI

,

* RESULT , ABSERR , MEVALS , NTR , IER.WRK , IWRK

)

TRISET returns an approximation RESULT to the sum / of the integrals of the

function F(X,Y) over the given set of triangles, and tries to satisfy an accuracy

requirement of the form

\I - RESULT] < max{EPSABS, EPSREL \I\}

where EPSABS and EPSREL are the requested absolute and relative accuracies.

The user specifies N triangles by supplying the abscissas and ordinates of their

vertices in X(3,*) and Y(3,*), respectively. MEVALS is a user-set limit on

the number of F(X,Y) evaluations. The integrator returns an estimate (often

pessimistic) of the absolute error
1

1 — RESU LT\ in ABSERR. If all goes well,

\I - RESULT] < ABSERR < max{EPSABS, EPSREL |JJ}.

Figure 2: Structure of TRISET
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NEVALS is the number of function evaluations used. When problem situations

are detected, an error code is issued in IER.

Two local quadrature modules are provided with the subroutine. The user

selects module LQO by setting the input parameter ICLOSE to 0. LQl is selected

by setting ICLOSE to 1 or 2. Each local quadrature module is based on Lyness

and Jespersen quadrature rules for the triangle [15]. LQl uses the Lyness and

Jespersen rule of degree 9 with 19 points and the rule of degree 11 with 28

points. LQO uses the Lyness and Jespersen rule of degree 6 with 12 points

and the rule of degree 8 with 16 points. LQl is usually more accurate than

LQO for fairly well-behaved functions. However, LQO, unlike LQl, uses function

values only at interior points of the triangle, so LQO can be used in cases where

the integrand has singularities on an edge without explicitly defining F(X,Y)

there. When a closed rule is used in this case, it is common practice to set the

function to 0 where the problem occurs. In some cases of vertex singularities,

the related asymptotic error expansions are known to be of the same form as

the ones obtained with an open rule [10].

With ICLOSE = 1, the extrapolation is performed as in TRIEX, on the

basis of the error expansion for the integral contributions of degree 9. This

alleviates problems with possible corruption of the extrapolation entries in case

of singularities on edges, where degree-11 rule evaluations are needed. Note

that the degree-11 rule does not require evaluations at the vertices. It can be

observed that use of the degree- 11 quadrature sums for the extrapolation is

often more efficient than the degree-9 rule in the presence of, for example, a

vertex singularity or some types of oscillatory behaviour of the integrand, as is

explained by the higher degree of the rule. ICLOSE = 2 provides the option

of extrapolating on the sequence of global quadrature sums obtained with the

degree-11 rule. At edge singularities (of the original triangles or subtriangles)

it is assumed that the integrand is set to zero by the user.

The open rule used when ICLOSE = 0, with less points per rule evaluation,

is in general efficient when many subdivisions are required to construct each

extrapolation entry.

Refer to Figure 2 for a diagram of the routines called by TRISET. Module

TRISET allots array storage space and calls TRIS1 which performs the work.

RlMACH is the Bell Labs [3] routine which supplies the machine constants

needed. XERROR [7] is used for error handling. TRISET is structured sim-

ilarly to TRIEX, with the main differences being the addition in TRISET of

TRIS1 and of two local quadrature modules (TRIEX uses only one closed rule

corresponding to LQl).

Further information involving the usage of the program is given in the Pro-

logue of the routine.

4. Examples
In Tables 2 and 3 we show the results from DTRIST for the integration of

the functions exp(— x — y)((l — z
)

2 + y
2

)

09 and y|y(0.5 — z)|(0.5 - z) respec-
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tively. over the star-shaped region composed by the triangles listed in Table 1

and shown in Figure 3.

Triangle Vertices

1 (-1/3,0) (1,0) (0,.5)

2 (0,-5) (1,0) (.7, .8)

3 (.7, .8) (1,0) (3tt,1)

4 (0,-5) (.7, .8) (.6,22)

5 (— e,1.7) (-1/3,0) (0,.5)

6 (-10,-10) (1/3, -.5) (-1/3,0)

7 (1/3, -.5) (1,0) (-1/3,0)

8 (1/3, -.5) (1.2-14) (1,0)

Table 1: Example Integration Region D

For comparison we include the results from TWODQ, a single precision

routine that can also be called with a union of triangles [6]. Also included are

the results from TRIEX called over the eight triangles successively. TWODQ
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Tri-

angle

Integral

approx.

Est. abs.

error

No. of

f-evals.

Act. abs.

error

1 0.1060137D+01 0.34D-07 1292

2 0.1351354D+01 0.52D-07 1292

3 0.2846715D+01 0.45D-06 20872

4 0.1322901D+00 0.10D-06 4496

TRIEX 5 0.3393981D+00 0.17D-07 224

6 0.1351640D+06 0.81D-01 402

7 0.1541128D+ 01 0.48D-06 1826

8 0.2427416D+03 0.23D-03 10548

Total 0.1354140D+06 0.82D-01 40952 0.13D-03

TWODQ
ICLOSE=0 0.1354139E+06 0.13E+00 40432 0.13E+00

ICLOSE=l 0.1354139E+06 0.14E+00 64954 0.12E+00

DTRIST
ICLOSE=0 0.1354140D+06 0.10D-00 11872 0.17D-01

ICLOSE=l 0.1354140D+06 0.23D-01 9568 0.1 ID— 01

ICLOSE=2 0.1354141D+06 0.91D-01 8280 0.48D-01

Table 2: Integration® of exp(— * — y)((l — x) 2 + y
2

)

0 9 on D

“Requested relative error for each integration was 10 6
.

does not have any extrapolation capabilities, and is not well suited for the

integration offunctions with singularities. A relative error of 10~

6

was requested

for each integration.

Note that the triangles 1, 2, 3, 7 and 8 all have the point (1,0) as a vertex,

where the first integrand has a singularity. In a polar coordinate system centered

at (1,0), the function has the singular behaviour of 1 /R 1 ' 8
,
where R represents

the radial coordinate in that system.

The triangles 1 and 7 share an edge along y = 0 and triangles 2, 3, 5, 6 and

8 have a vertex on y = 0, where the second function has a derivative singularity.

Furthermore, the second function has higher order derivative singularities along

* = 0.5, which is inside the triangles 1, 2, 4, 7 and 8. This was included as an

example for which the extrapolation is not expected to be effective.

The TWODQ examples were run on a Control Data Cyber 180/855 system

operating under NOS/VE (level 1.5.1) at the National Institute of Standards

and Technology. This machine carries about 14 decimal digits in single precision.

The results from TRIEX and DTRIST were obtained on a Sun 4/260 under Unix

4.1 at Western Michigan University. About 16 decimals are carried in double

precision on this system.
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Tri- Integral Est. abs. No. of Act. abs.

angle approx. error f-evals. error

1 0.2672767D— 01 0.12D-07 25322

2 -0.4512156D— 02 0.36D-08 8412

3 -0.1950725D^02 0.12D-04 224

4 0.5018726D+00 0.35D-06 6632

TRIEX 5 0.1637102D+01 0.15D-05 402

6 0.1122360D+03 0.11D-03 402

7 0.131541 ID— 01 0.33D-08 9302

8 -0.2547351D+01 0.23D-05 3784

Total 0.9235573D+02 0.12D-03 54480 0.19D-04

TWODQa

ICLOSE=0 0.9235634E+02 0.83E-03 11368 0.59E-03

ICLOSE=l 0.9235640E+02 0.12E-02 8084 0.64E-03

DTRIST
ICLOSE=0 0.9235575D+02 0.17D-04 6944 0.42D-05

ICLOSE=l 0.9235576D+02 0.92D-04 9752 0.44D-05

ICLOSE=2 0.9235575D+02 0.88D-04 12328 0.98D-06

Table 3: Integration 4 of |y(0.5 — z)|
1/,2

(0.5 — x) on D

“Requested accuracy was not reached because TWODQ detected roundoff error.

^Requested relative error for each integration was 10
-6

.

5. Concluding remarks
Automatic integration over triangles has received considerable attention by

several authors [5, 9, 1,2, 6]. Applications include integration over irregular re-

gions which can be triangularized or where the integral can be approximated by

that over a set of triangles.

TRISET is an extension of the TRIEX algorithm for integration over a

triangularized region. It allows dealing efficiently with problems where a relative

accuracy is requested for the integral over the entire set and also handles some

forms of boundary singularity.

Furthermore TRISET lends itself naturally to parallelization using the task

partitioning concept [8], as the user-supplied triangle set and its partitions pro-

vide an appropriate task pool, thereby retaining the advantages offered by the

extrapolation technique.

r
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